

Version 1.1 09.03.2020

BATTLE BEASTS
Project vision

PSIT4 | IT18a_ZH

Aleksandra Timofeeva
Cyril Wanner
Erwin Tran

Lars Höhener
Ilbien Paul

Marc Berchtold
Marcel Brennwald

Marius Niklaus
Michael Schlaubitz

Version 1.1 09.03.2020

Table of versions

Version Date Changes

1.0 03.03.2020 Initial Version

1.1 09.03.2020 Project vision document finished.

Table 1: Version history

Table of contents

1. Context .. 1

2. Objectives and functional overview .. 1

3. Quality Attributes / non-functional requirements .. 2

4. Constraints .. 4

5. Principles ... 5

6. Architecture ... 6

7. External Interfaces... 7

8. Code ... 7

9. Data .. 8

10. Infrastructure ... 9

11. Deployment ... 9

12. Operation and Support ...10

13. Decision log ..10

14. Table of figures ...11

15. Table of tables ..11

Version 1.1 09.03.2020 1

1. Context

Gaming is more popular than ever in the entertainment industry and is expected to
keep growing. Today there are various different computer games on the market. It’s
getting harder to acquire the customers’ interest. Games connected to real world facts
are of particular interest for many players since they can gain new useful knowledge
in a playful way. Therefore, the best idea is to combine digital gaming with the theme
of real-world animals.

Battle easts is a web-application in the form of a turn-based card game for two players.
Each player has a certain amount of cards showing animals or equipment. Each animal
card consists of a name, animal photo and short description. The cards have three
different stats: the attack value, the defense value and the action points. Depending
on these parameters, the player can win or lose. Moreover each player has health
points which the player gains or loses during the game. To improve the points, players
can also use special equipment cards.

To start the game, the user must register. However, the biggest difference and
advantage among competitors is that this game can be played directly in the browser
on mobile phones and computers.

This game is developed for players of any age. Colorfully designed cards and easy-to-
understand rules will immediately obtain users’ interest. The actors are player, product
owner, developer, supporter.

2. Objectives and functional overview

Battle Beasts is an online card game with already existing functions, such as
registering an account, assembling decks, a working matchmaking system and the
possibility to play multiple rounds against real enemies.
In this project the main objectives are creating additional features for the game,
implementing third party functions and optimizing already existing features. The
planned objectives can be put into categories and are rated by importance:

• 1 – Not important / optional

• 2 – Should be implemented / gives an advantage

• 3 – Important / needed

Visual design:
The game will be optimized with more visuals and animations. It will be possible to
see the opponent's moves (BEAST-3), attack animations for the cards will be
implemented (BEAST-4) and attack indicators will be included (BEAST-5) which
ensure that the player can directly recognize which cards are able to attack and
which not.

https://battlebeasts.atlassian.net/browse/BEAST-3
https://battlebeasts.atlassian.net/browse/BEAST-4
https://battlebeasts.atlassian.net/browse/BEAST-5

Version 1.1 09.03.2020 2

Furthermore, the deck creator will receive a button to directly buy new cards (BEAST-
32). A drag and drop function will be added for the deck creator (BEAST-33). Deck
names will receive a new design (BEAST-35). Cards will receive different colors and
pictures in the deck making list (BEAST-38).
Importance: 2 With better visualization and animations the game will be better to
market.

Game modes:
It will be possible for the player to choose between game modes such as casual and
ranked (BEAST-10). Depending on the players win rate in certain modes the player
will get a player rank (BEAST-12) and will be shown on a leaderboard (BEAST-11)
Importance: 3 Competitive players which are the main audience of this game will be
hooked faster and play more rounds to increase their player ranks.

Opponent AI:
The game will feature an AI to play against to train before playing against real
opponents (BEAST-13). The player can choose between different difficulties of the AI
to optimize the training effect (BEAST-15).
Importance: 3 Players which have few experiences in card games will have a better
introduction into the game.

Game content:
The game will be expanded with more animal cards (BEAST-16), spell cards
(BEAST-18) and a new function to attack an opponent's card with multiple cards
(BEAST-19).
Importance: 2 More content and a fair balancing will attract more players.

Mobile friendly
The game will receive a mobile friendly design (BEAST-25), a new game board
(BEAST-22) and the cards will be optimized for mobile screens (BEAST-24).
Importance: 3 The main objective is to make the game playable on the phone to
reach a bigger player base.

Payment:
The game will receive a third party payment system (BEAST-30) which will give
players the opportunity to buy cards (BEAST-27) and deck space (BEAST-29).
Importance: 3 This will create the biggest part of the income.

3. Quality Attributes / non-functional requirements

Usability Through a very user friendly UI the web application is self-explanatory and
multiple labelled buttons guide through the menus. For the gameplay itself a manual
will be available where every step is described in detail. The basic rules of the game
can be found under game description. In the game itself animations and
visualizations make every move clearly visible for the player.

https://battlebeasts.atlassian.net/browse/BEAST-32
https://battlebeasts.atlassian.net/browse/BEAST-32
https://battlebeasts.atlassian.net/browse/BEAST-33
https://battlebeasts.atlassian.net/browse/BEAST-35
https://battlebeasts.atlassian.net/browse/BEAST-38
https://battlebeasts.atlassian.net/browse/BEAST-10
https://battlebeasts.atlassian.net/browse/BEAST-12
https://battlebeasts.atlassian.net/browse/BEAST-11
https://battlebeasts.atlassian.net/browse/BEAST-13
https://battlebeasts.atlassian.net/browse/BEAST-15
https://battlebeasts.atlassian.net/browse/BEAST-16
https://battlebeasts.atlassian.net/browse/BEAST-18
https://battlebeasts.atlassian.net/browse/BEAST-19
https://battlebeasts.atlassian.net/browse/BEAST-25
https://battlebeasts.atlassian.net/browse/BEAST-22
https://battlebeasts.atlassian.net/browse/BEAST-24
https://battlebeasts.atlassian.net/browse/BEAST-30
https://battlebeasts.atlassian.net/browse/BEAST-27
https://battlebeasts.atlassian.net/browse/BEAST-29

Version 1.1 09.03.2020 3

Reliability / Security All application parts have detailed tests in the frontend and
backend that ensure correct inputs and updates of the user’s data. This security
measure is implemented so that no data is lost in a registration or payment process.
Connection failures can occur during a game depending on the internet connection of
the player. In such a case the last state of the game is saved and in case of a
reconnection loaded again.

Availability The application will be available online at all times with the exception of
update down times, which will last two to three hours.

Supportability The whole application is split into a frontend and a backend part. The
files are structured in a detailed and specifically named folder structure. Through the
use of TypeScript classes and React, the application is clearly readable and which
makes it easier for programmers to understand the code.
In section five more coding conventions can be found.
All naming conventions were respected and the documentation is strictly written in
English enabling an international use.

Implementation The resources needed for the application are an internet capable
device such as a computer or mobile phone with a browser and a stable internet
connection. The game is released completely in English.

Packaging The application will be released online as a web application and as a
mobile web application.

Legal The application and all designs in it are property of the team behind Battle
Beasts and the contractor of this project. All pictures and logos are not copyright
claimed or created by our team.

Internationalization All descriptions and menus in the game are written in English to
gain an international audience.

Version 1.1 09.03.2020 4

4. Constraints

Risk Probability Damage
Potential

Priority Counter-measures

1 Playerbase
Players who play
similar games
have invested time
and money to
collect lots of
cards which leads
to prestige among
the players. This
means people
playing similar
games won’t be
easy to fetch and
there is a chance
that our estimated
player base is
wrong.

High High 1 Spend more on
advertising the
game on social
media.

2 Network stability
BattleBeasts
requires a stable
network. Metcal-
fe’s law points out
that the benefit of
a network grows
quadratic as the
num- ber of users
increases.

Medium Medium 2 Use technologies
capable of
auto-scaling and
run stress tests.

3 Knowledge
Not every
developer is
familiar with the
technologies in
use.

Medium Low 3 Hold workshop-
like meetings or
do pair-
programming
when problems
occur.

Version 1.1 09.03.2020 5

4 Real-time protocol
There is a
chance that the
protocol used
for real-time
communication
is not suited for
games

Low Low 4 Make sure the
communication
is implemented
like in the
prototype
which has
proven that it
works.

Table 2: Constraints

5. Principles

The following principles and practices should be read and understood by all team
members. Applying them successfully will allow us to develop better software in
many regards.

Follow these Clean Code principles:

• Don’t Repeat Yourself (DRY)
• Keep it simple, stupid (KISS)
• Beware of Optimizations!
• Favour Composition over Inheritance (FCoI)
• Integration Operation Segregation Principle (IOSP)

• Single Level of Abstraction (SLA)
• Single Responsibility Principle (SRP)
• Separation of Concerns (SoC)
• Source Code Conventions

o Style guide for both the frontend and backend: Airbnb JavaScript Style
Guide.

o Additionally, the Airbnb React/JSX Style Guide for the frontend.

• Interface Segregation Principle (ISP)
• Dependency Inversion Principle (DIP)
• Liskov Substitution Principle
• Principle of Least Astonishment
• Information Hiding Principle

• Open Closed Principle
• Tell, don't ask
• Law of Demeter

Source: Clean Code Developer

https://clean-code-developer.com/grades/grade-1-red/#Don8217t_Repeat_Yourself_DRY
https://clean-code-developer.com/grades/grade-1-red/#Keep_it_simple_stupid_KISS
https://clean-code-developer.com/grades/grade-1-red/#Beware_of_Optimizations
https://clean-code-developer.com/grades/grade-1-red/#Favour_Composition_over_Inheritance_FCoI
https://clean-code-developer.com/grades/grade-1-red/#Integration_Operation_Segregation_Principle_IOSP
https://clean-code-developer.com/grades/grade-2-orange/#Single_Level_of_Abstraction_SLA
https://clean-code-developer.com/grades/grade-2-orange/#Single_Responsibility_Principle_SRP
https://clean-code-developer.com/grades/grade-2-orange/#Separation_of_Concerns_SoC
https://clean-code-developer.com/grades/grade-2-orange/#Source_Code_Conventions
https://github.com/airbnb/javascript#readme
https://github.com/airbnb/javascript#readme
https://github.com/airbnb/javascript/tree/master/react#readme
https://clean-code-developer.com/grades/grade-3-yellow/#Interface_Segregation_Principle_ISP
https://clean-code-developer.com/grades/grade-3-yellow/#Dependency_Inversion_PrincipleDIP
https://clean-code-developer.com/grades/grade-3-yellow/#Liskov_Substitution_Principle
https://clean-code-developer.com/grades/grade-3-yellow/#Principle_of_Least_Astonishment
https://clean-code-developer.com/grades/grade-3-yellow/#Information_Hiding_Principle
https://clean-code-developer.com/grades/grade-4-green/#Open_Closed_Principle
https://clean-code-developer.com/grades/grade-4-green/#Tell_dont_ask
https://clean-code-developer.com/grades/grade-4-green/#Law_of_Demeter
https://clean-code-developer.com/

Version 1.1 09.03.2020 6

6. Architecture

The software architecture for our project is based on the programming language
TypeScript which is implemented using Node.js in the backend and React in the
frontend. This allows for fast, agile prototyping while also providing a future proof and
stable solution in the long run. To match the asynchronous and event-driven nature
of Node.js MongoDB is chosen as the database to provide persistence.

Regarding the basic technical services required, well tested, proven and popular
libraries are chosen. This includes Pino, the chosen logger, which is lightweight, fast
and allows the output of both easily automatically consumable logs in the JSON
format or pretty human readable text format.
For testing, Jest is used for unit testing and Cypress for End-To-End testing. Both
these libraries are very well suited for the asynchronous nature of TypeScript and
have reached enough maturity to be used. To keep our code style consistent in the
front- and backend and across developers the team employs ESLint with the popular
JavaScript Style Guide by AirBnb.
The communication between front- and backend in our product uses Socket.io for
real-time Websocket based communication while a REST API interface implemented
in Express.js is used for everything else like authentication. Socket.io was especially
chosen because of its solid handling of unstable connections, automatic reconnection
and fallback to HTML polling should Websockets be unavailable on the used device
and browser combination. Express.js was chosen because it represents the de-facto
standard for REST API building in the Node.js ecosystem and is very customizable
using middlewares.
Mongoose is used as an abstraction layer and ODM for MongoDB chosen for its
ability to bring more structure and type safety to the document-based storage system
of MongoDB. Additionally to Mongoose, JSON files are used to store data which is
rarely changed and the same for all users like game asset metadata.

The business infrastructure of our product includes authentication which is realized
using the popular and very flexible library Passport.js. The authentication strategy
used is JsonWebToken or JWT for short. This strategy is chosen because it’s very
well suited for single page applications that communicate with the backend using
stateless API endpoints. It also removes the need of having to keep track of user
sessions in the backend which in return increases and enables easy scalability.

Finally, to create a responsive, fast and modern web application the widely used,
company backed and proven React library is used. React was chosen because of its
lightweight nature, amount of available documentation and existing experience in our
development team.

Version 1.1 09.03.2020 7

Figure 1: Architecture diagram

7. External Interfaces

The only external interface which will be used in Battle Beasts is the PayPal-API. By
adding microtransaction to Battle Beasts, the team needs to include a payment
service. The decision was made to use PayPal because of an easy to use and
accessible API.

The communication of the Battle Beasts application takes place via a REST interface
of the PayPal API. By including an API token in our requests, the application of Battle
Beasts can communicate with the PayPal developer service.
During development, the team will be using a sandbox account in PayPal. Therefore,
no real money needs to be transferred during development and testing.

8. Code

A key part of our application is the communication between the frontend and backend
as Battle Beasts uses two different communication interfaces: a RESTful API and a
realtime WebSocket connection. The RESTful API is used where realtime data is not
mandatory, such as user registration, login or deck management calls. But when a
user is starting a new game, a new WebSocket connection gets established as
described in figure 2.

Version 1.1 09.03.2020 8

Figure 2: Game creation

After the WebSocket connection has been established, the player connects to the
matchmaking room in which he waits to be assigned to a game room. As soon as the
server finds two equally skilled players, he sends both of them to a newly created
game room and the players leave the matchmaking room. Within this game room, the
players and the server exchange their game states according to the actions the
players executed.
On the client side, the game state is kept in the React state which automatically
triggers a re-render of the changed parts each time an update gets received from the
server.

9. Data

The user data is handled in the backend with the use of MongoDB, which follows a
document-oriented model, rather than a traditional relational model. This means that
game data is stored in JSON-like documents in the database. In combination with
MongoDB the team uses Mongoose as an ODM which allows us to seamlessly
retrieve and store data into the database.
Currently our application stores the players information and their created decks and
owned cards.

Version 1.1 09.03.2020 9

10. Infrastructure

The software and MongoDB instance is being run in a Docker container on a Linux
VPS. This setup enables easy deployment and scaling should it be needed, by using
the builtin Docker Swarm load balancer. Redundancy could easily be added using
multiple Docker Swarm nodes.

Figure 3: Infrastructure diagram

11. Deployment

The software is deployed to our private server using Docker Compose with
continuous integration (CI). The compose file builds all of the necessary Docker
images and the CI deploys them on the server if the tests run successfully.
Since everything is run in Docker containers there is no need to install anything other

than the docker container engine on the server. This is done using apt:

sudo apt install docker

Version 1.1 09.03.2020 10

12. Operation and Support

To monitor the quality of our software SonarQube is used to evaluate test results and
inform the team of Battle Beasts if the quality of the tests is not up to our standards.

To log errors and exceptions the Pino framework, a Node.js logger, is used.

13. Decision log

Domain Outcome Reason

Frontend-
framework

React with
TypeScript

React is one of the leading frontend frameworks and
backed by multiple big companies, which allows us to
write a future-proof and stable application. Since it
has a large community there are a lot of integrations
available and help can be found easily. The addition
of TypeScript allows us to write type-safe code and
errors can be easily detected while writing the code.

Backend-
framework

Node.js &
Express with
TypeScript

The backend technology should be as close to the
frontend technology as it allows developers to easily
work on both parts and code can also be shared
between them. This combination fulfills our
requirements and is also very popular in the industry.
It can also scale well and is easy to integrate in a
serverless environment.

Database MongoDB As our product is not database heavy a lightweight
solution was preferred. MongoDB fits perfectly, as it is
a schema-less database and is integrated well in the
Node.js ecosystem.

Git
hosting

github.com The team decided to move from the GitHub
Enterprise hosting by ZHAW to the public GitHub as it
offers more features, such as the new integrated CI
(GitHub Actions).

CI GitHub
Actions

The team didn’t want to use yet another tool for our CI
service so the one already integrated in GitHub was
used.

Version 1.1 09.03.2020 11

Project
management
software

JIRA
Cloud

After an evaluation of GitHub Issues, Trello and JIRA,
the team decided to go for JIRA Cloud which is totally
free for up to 10 users. It offers some useful features
which the other products didn’t provide, such as time
logging, estimations, sprints, epics and detailed
customization possibilities.

Coding style
guide

AirBnb The JavaScript Style Guide by AirBnb is one of the
most popular in the JavaScript community and offers
many well thought-out decisions which are all
documented in detail, so it is easy to understand why
a certain rule must be followed. The extension for
React also checks for common mistakes regarding
performance and accessibility.

WebSocket
framework

Socket.io After a small prototype Socket.io met all our
expectations in performance, simplicity and
documentation. As it is one of the most popular
solutions and used for many websites, it can be
assumed that it is really robust and works even with a
lot of traffic.

Table 3: Decision log

14. Table of figures

Figure 1: Architecture diagram.. 7

Figure 2: Game creation .. 8

Figure 3: Infrastructure diagram ... 9

15. Table of tables

Table 1: Version history ... 2

Table 2: Constraints ... 5

Table 3: Decision log .. 11

