
GROUP IP1 | PSIT3 IT18a_ZH

BATTLE BEASTS

Cyril Wanner
Marc Berchtold

Ilbien Paul
Marcel Brennwald

David Tschan

TABLE OF CONTENTS

Use Cases
Additional requirements
Game Rules
Domain model
Software architecture
Design artifacts
Implementation
Project management
Glossary

2-12
11-12
13-14
15
16-17
18-19
20
21-28
29

1GROUP IP1 | PSIT3

2GROUP IP1 | PSIT3

USE CASES

USE CASE 1: REGISTER ACCOUNT

A player who wants to play a game or manage his account can login us-
ing the form available in the website header. After entering his username
and password and submitting the form, the credentials are checked
against the database. In case of a successful login, the login state will be
stored locally in the browser and the player gets a message saying that
the login was successful.

Main success scenario:
Not registered users can register themselves using a button that is clear-
ly visible in the UI. The user has to fill in a unique username, a unique
email address, a password with at least 8 characters and the password
confirmation. The inputs are checked directly for their validity. The form
can be sent by a button labeled “register” which is visible in the UI. If the
registration is successful the user is redirected to the homepage.

Alternate scenario:
If the username or email is already used, a warning is displayed and the
registration process is stopped. The warning displays the cause for the
error. For example: “username already in use”, “email already in use”,
“password have to be at least 8 characters long”.

USE CASE 2: DO LOGIN

A player who wants to log out and leave the game can use the logout
button which is visible in the UI. When the button is pressed a message
will be displayed that the logout was successful. Logging out helps to
protect the players account.

USE CASE 3: DO LOGOUT

3GROUP IP1 | PSIT3

Scope: Battle Beasts - Browser Game
Level: User-goal
Primary Actor: Player
Stakeholders and Interests:
•	 Player: Wants an easy and fast way to create decks so he can choose

which cards he wants to use in his next game.
•	 Company: Wants players to be able to create decks so they have more

control over the game and can choose the cards they like most and
keep playing the game with different strategies.

Preconditions:
Player is logged in and authenticated.
Postconditions:
New deck is saved with all selected cards and can be chosen for the next game.
Main success scenario:

1.	 Player navigates to the deck management page.
2.	 Player starts creating a new deck.
3.	 Player sees all his unlocked cards and the number of cards 		
		 left he can put in his new deck.
4.	 Player selects a card which he wants to store in his new deck.
5.	 The card moves into his deck and the amount of cards
		 which can be put in the deck gets updated.
Player repeats step 4-5 until his deck is full.
6.	 Player chooses a name for the deck.
7.	 Player saves the deck.
8.	 System validates the deck name and cards.
9.	 System saves the new deck with all cards in the database.
10.	 Player gets redirected back to the deck management page.

Alternative Flows:
2a. Player reached max decks.

1. System shows a message to the player that he cannot create a new
deck because he has reached the maximum number of decks.
2. System suggests removing an existing deck or buying additional
deck space.

4-5a. Player moved a card by accident or wants to move another card
out of the deck.

1. Player selects the card in the deck he wants to move out of the
deck.

USE CASE 4: CREATE DECK

4GROUP IP1 | PSIT3

USE CASE 4: CREATE DECK

2. The card moves out of his deck and the number of cards left he
can put in his deck gets updated.

8a. Player wants to save without having selected enough cards.
1. System shows a message to the player that indicates how many
more cards he has to select.
2. Deck is not saved into the database.

8b. Validation fails because the player already has a deck with the same
name.

1. System shows a message to the player that he needs to choose a
different name.
2. System highlights the input field for the deck name.

8c. Validation fails because the player didn’t choose a deck name.
1. System shows a message to the player that a deck name is re-
quired.
2. System highlights the input field for the deck name.

8d. Validation fails because the player tried to manipulate the game by
inserting cards he does not own.

1. System shows a message to the player that he has used cards
which he does not own.
2. System removes the cards he does not own from the deck.

9a. Deck cannot be saved into the database.
1. System logs failed attempt to save into the database with all avail-
able error information.
2. System shows a message to the player that the deck could not be
saved, and he should either try again or contact the support.

Special Requirements:
UI needs to be intuitive and work on both large (Desktop) and small (Mo-
bile) screens.
Technology and Data Variations List:
Name is entered and saved in UTF-8
Frequency of Occurrence:
Could be the whole time with multiple players simultaneously.
Miscellaneous:
Open issues:
1. Define the number of cards in a deck

5GROUP IP1 | PSIT3

USE CASE 5: MANAGE DECKS

Main Success Scenario:
The user arrives at the deck management page and is presented with a
list of his created decks. The user chooses a deck and the action (edit or
delete) he wishes to execute. The system then decides whether to redi-
rect the user to the create deck page and update his chosen deck with
the changes made on that page or if the chosen deck should be delet-
ed from the players account based on the action the user chose. After
successful execution of the action chosen, the system redirects the user
back to the deck management page.
Alternate Scenarios:
If the system fails to update the chosen deck with the changes made, the
user gets redirected to the deck management page and an error is pre-
sented to him.
If the system fails to delete the chosen deck, the user gets redirected to
the deck management page and an error is presented to him.
If the user submitted an invalid deck modification, the system redirects
the user to the create deck page with the selected deck. The system dis-
plays an error to the user containing a list of the changes necessary to
make the modification valid.

USE CASE 6: BUY DECK SPACE

Main Success Scenario:
A player wanting to extend his deck space can buy additional space
on the deck management page by clicking on a button. He will then be
presented a form which allows him to select how much more space he
wants to buy and with which payment method. After selection and con-
firmation of the purchase, he will get redirected to a payment service
where he will authorize the payment. The player will get redirected back
to the homepage where the payment will be verified and in case of a suc-
cessful payment, his deck space will get expanded by the amount he has
payed for.
Alternate Scenarios:
If the player cancels the payment while he is on the page of the external
payment provider, he will get redirected back to our page and will be
shown a message informing him that the payment was not successful
and the deck space will not get expanded.

6GROUP IP1 | PSIT3

USE CASE 7: SEARCH OPPONENT

Main success scenario:
The user can press the play button when he is logged in. The player is
then added to a waiting pool. The system now compares the skill value
of the user to the other players in the waiting pool. The system choos-
es an opponent with a skill value as similar as possible to the player or
a skill value in a certain range. The system starts the game with the two
matched players.

Alternate scenario:
While the user is waiting for a fitting match a waiting message is dis-
played. The searching process can be stopped with a well visible button
in the UI.

USE CASE 8: PLAY ROUND

Scope: Battle Beasts - Browser Game
Level: User-goal
Primary Actor: Player
Stakeholders and Interests:

•	 Player: Wants a well working turn-based card game.
•	 Company: Wants to offer a well working application to maintain a big

player base.

Preconditions:
Player is logged in and authenticated.
Postconditions:
Player receives a new card.
Player’s skill value is updated.
Main success scenario:

1.	The player starts a round with a chosen deck.
2.	The player is matched against an opponent with a similar skill value.
3.	The System randomly decides which player starts.
4.	The player begins his first turn consisting of five phases.
5.	The player begins the “start phase” in which the system fills up the

players action points and adds new cards to his hand.
6.	The player goes into the “cast phase” in which the player has the

7GROUP IP1 | PSIT3

USE CASE 8: PLAY ROUND

possibility to cast animals from his hand onto the game’s board. The
player can cast as many animals as long as enough action points are
available.

7.	The player goes into the “spell phase” in which the player has the
possibility to activate spell or equipment cards on his animals. The
player can activate as many spell and equipment cards as long as
enough action points are available.

8.	The player goes into the “attack phase” in which the player has the
possibility to attack the opponent’s animals with his own animals
or attack the opponent directly if no animals are on the opponents
site.

9.	The player goes into the “end phase” in which the system updates
values and starts the turn of the opponent.

As soon as one of the players life points reaches zero the system ends
the round and determines the winner.

Alternative Flows:
6a.	 The Player wants to cast or activate card but has not enough action 	
	 points for the card.
1. 	 A message is displayed informing the player that not enough action 	
	 points are available.

Special Requirements:
UI needs to be intuitive and work on both large (Desktop) and small (Mo-
bile) screens.
Technology and Data Variations List:
Cards and their initial attributes are stored in a JSON file.
Frequency of Occurrence:
The whole time with multiple players simultaneously.
Miscellaneous:
Open issues:
1.	 Connection problems or player quitting during an active game.

8GROUP IP1 | PSIT3

USE CASE 8: PLAY ROUND

9GROUP IP1 | PSIT3

USE CASE 9: COLLECT CARD

After finishing a round of Battle Beasts the player receives a card. The
card will be randomly selected from the system. The card will then be
added to his personal Card collection and can be used in upcoming
rounds.

USE CASE 10: BUY CARD

Main Success Scenario:
The user is logged in and navigates to the collection page. The user
chooses the number of cards packs to purchase. The customer makes a
purchase and is redirected to a payment service where the total is dis-
played. The customer enters the payment information and confirms the
purchase. The system validates the payment information and handles
the payment. The System saves the sale, updates the user’s account and
the sale record. The contents of the purchase are now on show in the
user’s card collection.
Alternate Scenario:
At any time the user can cancel his purchase. The systems aborts the
purchase if the payment validation fails and displays a message to the
user displaying that the purchase has failed and the payment informa-
tion has to be reentered.

10GROUP IP1 | PSIT3

USE CASE DIAGRAM

11GROUP IP1 | PSIT3

ADDITIONAL REQUIREMENTS

Functional
The application consists of multiple parts:
•	 A web application for standard functionalities such as register, login

and log out.
•	 A management part for the decks that are used in the game.
•	 A purchase area where cards or deck space can be bought.
•	 The main game

•	 An automatic opponent search
•	 The turn based card game
•	 A reward card at the end of a game

All application parts are described more detailed in the use cases.

Usability
Through a very user friendly UI the web application is self explaining and
multiple labeled buttons guide through the menus.
For the gameplay itself a manual will be available where every step is de-
scribed in detail.
The basic rules of the game can be found under game description.

Reliability
All application parts have detailed tests in the frontend and backend that
ensure correct inputs and updates of the user’s data. This security mea-
sure is respected so that no data is lost in the process of a registration
or payment.
Connection failures can occur during a game depending on the internet
connection of the players. In such a case the last state of the game is
saved and in case of a reconnection loaded again.

Performance
The application will be available all the time and only offline for small up-
dates.

Supportability
The whole application is split into a frontend and a backend part. The
files are structured in a detailed and specifically named folder structure.
Through the use of typescript classes and react, the application is clearly
readable and which makes it easier for programmers to understand the
code.

12GROUP IP1 | PSIT3

ADDITIONAL REQUIREMENTS

All naming conventions were respected and the documentation is strictly
written in english, enabling an international use.

Implementation
The resources needed for the application is an internet capable device
such as a computer or mobile phone with a browser and a stable inter-
net connection.
The game is released completely in english.

Interface
No external systems are needed for the application.

Operations
The game is hosted on a server and all data is stored in a database.

Packaging
The application will be released only online as a web application.

Legal
The application and all designs in it are property of the team behind Bat-
tle Beasts and the contractor of this project.

13GROUP IP1 | PSIT3

GAME RULES

Basics:
The idea is a turn-based card game where two players with a certain amount of health and action
points battle each other until one party has no more health points left. The card game itself consists
of animal cards which fight each other or attack the opponent directly, spell cards which enable the
player to boost their animals or decrease the opponent’s animals’ skills temporarily and equipment
cards which improve animals permanently. Every card costs a certain amount of “action points” so
that you have a limitation of tactical moves for any turn you make.

Players and Cards:
The player has a deck of 20 cards, a set amount of action points and a certain amount of life points.

An animal card has a species, an action point value, an attack value and a defense value. Animals can
be played in attack or defense mode. Only animals in attack mode can attack other animals.

A spell card has an effect and an action point value. If the card is played the effect will be activated
instantly.

An equipment card has an effect and an action point value. If the card is played the effect lasts
permanently on the chosen animal.

Action points are used to limit the players possibilities. Every card has an action point value and by
the cast or activation of the card this action point value will be subtracted from the players action
point values.

The game:
The game starts with two players drawing five cards from their deck and it will be randomly selected
which player starts. The player which will be selected then starts his first turn.

A turn is split into five phases:

1. The start phase
In the start phase the player draws a card from his deck and his action points will be filled up.

2. The cast phase
In the cast phase the player can cast animals in attack or defense mode onto the field as long
as there are enough action points available.

3. The spell phase
In the spell phase the player can activate spell or equipment cards to upgrade his animals as
long as there are enough action points available.

4. The attack phase
In the attack phase the player can attack the enemy’s animals or if the opponent’s side is
empty, the opponent directly.

5. The end phase
In the end phase the life points are counted and killed animals are removed from the field.

Animal
in

attack
mode

Anim
al

in
defense
m

ode

14GROUP IP1 | PSIT3

GAME RULES

Fighting
Only animals in attack mode can attack other animals. To attack and destroy another animal the
attack points of the attacking animal need to be higher than the attack or defense value of the
targeted animal. If an animal in defense mode is destroyed it will be removed from the field. If an
animal in attack mode is destroyed it will be removed from the field and the difference between the
attack point of the attacking animal and the targeted animal will be subtracted from the opponent’s
health points.

If there are no animals on the field the player can be attacked directly. If an animal attacks a player
directly the damage will be subtracted from the players health points.

The field [1]
The field consists of as many animal cards a player will cast. The maximum will be set to ten to
ensure a fair gameplay. Every animal card has a slot bellow itself where spell or equipment cards will
be placed if activated. The hand is shown directly on the bottom of the screen.

[1]

15GROUP IP1 | PSIT3

DOMAIN MODEL

16GROUP IP1 | PSIT3

SOFTWARE ARCHITECTURE

The software architecture for our project is based on the programming
language Typescript which is implemented using Node.js in the backend
and React in the frontend. This allows for fast, agile prototyping while
also providing a future proof and stable solution in the long run. To
match the asynchronous and event-driven nature of Node.js MongoDB is
chosen as the database to provide persistence.

Regarding the basic technical services required, well tested, proven

17GROUP IP1 | PSIT3

SOFTWARE ARCHITECTURE

and popular libraries are chosen. This includes Pino, the chosen logger,
which is lightweight, fast and allows the output of both easily automati-
cally consumable logs in the JSON format or pretty human readable text
format.
For testing, Jest is used for unit testing and Cypress for End-To-End test-
ing. Both these libraries are very well suited for the asynchronous nature
of Typescript and have reached enough maturity to be used. To keep our
code style consistent in the front- and backend and across developers
we employ ESLint with the popular JavaScript Style Guide by AirBnb.
The communication between front- and backend in our product uses
Socket.io for realtime Websocket based communication while a REST
API interface implemented in Express.js is used for everything else like
authentication. Socket.io was especially chosen because of it’s solid han-
dling of unstable connections, automatic reconnection and fallback to
HTML polling should Websockets be unavailable on the used device and
browser combination. Express.js was chosen because it represents the
de-facto standard for REST API building in the Node.js ecosystem and is
very customizable using middlewares.
Mongoose is used as an abstraction layer and ODM for MongoDB cho-
sen for its ability to bring more structure and type safety to the doc-
ument based storage system of MongoDB. Additionally to Mongoose,
JSON files are used to store data which is rarely changed and the same
for all users like game asset metadata.

The business infrastructure of our product includes Authentication which
is realised using the popular and very flexible library Passport.js. The au-
thentication strategy used is JsonWebToken or JWT for short. This strat-
egy is chosen because it’s very well suited for single page applications
that communicate with the backend using stateless API endpoints. It also
removes the need of having to keep track of user sessions in the back-
end which in return increases and enables easy scalability.

Finally to create a responsive, fast and modern web application the wide-
ly used, company backed and proven React library is used. React was
chosen because of its lightweight nature, amount of available documen-
tation and existing experience in our development team.

18GROUP IP1 | PSIT3

DESIGN ARTIFACTS

19GROUP IP1 | PSIT3

DESIGN ARTIFACTS

20GROUP IP1 | PSIT3

IMPLEMENTATION

The validation of the software architecture was made during the first
iteration of our project. We kept the following aspects in mind and com-
pared them to the requirements of the project to make a decision:

1.	 Validation and clearance
2.	 System test
3.	 Integration test
4.	 Componenten-, module- respectively unit test
5.	 Development, programming

After discussing and weighing the arguments we finally had a rough idea
of how we would implement the previous mentioned requirements:

1.	 Git (https://github.zhaw.ch/berchmar/PSIT3-HS19-IT18a_ZH-TeamIP1)
2.	 Requirement specification analysation
3.	 Interface requirements
4.	 Shallow, Enzyme
5.	 TypeScript, React, Node, MongoDB

https://github.zhaw.ch/berchmar/PSIT3-HS19-IT18a_ZH-TeamIP1
https://github.zhaw.ch/berchmar/PSIT3-HS19-IT18a_ZH-TeamIP1/tree/master/diagrams
https://github.zhaw.ch/berchmar/PSIT3-HS19-IT18a_ZH-TeamIP1/tree/master/diagrams

21GROUP IP1 | PSIT3

INCEPTION PHASE

In the first iteration, the main goal was to find a project idea and write
it down more detailed. We already decided on the architecture to be
able to start with a prototype in the next iteration. In the end, we almost
matched the estimated effort with only two hours too much.

ITERATION 1

Task Type Description Responsible Estimated
effort (in h)

Effective effort
(in h)

1 Administrative Idea finding Cyril 16 16

2 Documents Project sketch Cyril 20 24

3 Administrative Presentation Marc 5 4

4 Documents GUI Wire-
frames

David 5 2

5 Documents Architecture
definition

Cyril 4 4

6 Documents Analyze Use-
case "Register
account" and
"Do login"

Cyril 2 1

7 Meeting Update meet-
ing (18.09.)

Cyril 7 8

8 Meeting Update meet-
ing (23.09.)

Cyril 5 5

9 Meeting Update meet-
ing (28.09.)

Cyril 7 9

10 Administrative Participate in
project pre-
sentations
(30.09.)

Marc 15 15

86 88(+2)

22GROUP IP1 | PSIT3

ELABORATION PHASE

With iteration 2, we have implemented an architectural prototype that
showcases all our different needs, for example, a RESTful API and real-time
communication between two users. Additionally, we implemented some
easier use-cases so the developers which are not familiar with the chosen
technology have an easy start. Overall, we are six hours over the estimation
because it took a bit more time to get on with our stack.

ITERATION 2
Task Type Description Responsible Estimated

effort (in h)
Effective
effort (in h)

1 Administrative Development environ-
ment set up

Marc 6 5

2 Coding Architectural prototype
implemented

Marc 6 6

3 Coding UC 1 “Register account” Marc 10 14

4 Coding UC 2 “Do login” Cyril 10 6

5 Coding UC 3 “Do logout” Marcel 2 4

6 Documents Prepare Use-cases for
next iterations

Cyril 10 14

7 Meeting Architecture workshop
(04.10.)

Cyril 5 8

8 Learning React & TypeScript
Tutorials

Ilbien 10 8

9 Meeting Update Meeting (07.10.) Cyril 5 5

10 Meeting Project Sketch feedback
(07.10.)

Cyril 4 4

11 Meeting Update Meeting (11.10.) Cyril 5 5

12 Documents Domain Model first
version

Ilbien 5 5

13 Coding Basic Design implemen-
tation

Cyril 2 2

14 Administrative Update iteration plan Cyril 1 1

15 Administrative Prepare iteration 3 Cyril 3 3

16 Documents Prepare example cards David 4 4

17 Meeting Update meeting (14.10.) Cyril 5 5

93 99(+6)

23GROUP IP1 | PSIT3

ELABORATION PHASE

ITERATION 3

Task Type Description Responsible Estimated
effort (in h)

Effective
effort (in h)

1 Documents Finish domain model Cyril 4 2
2 Coding Implement dummy match making Marc 3 6
3 Coding UC 8 "Play round" - Create new

game
Cyril 8 4

4 Coding UC 8 "Play round" - Start phase Ilbien 10 8

5 Coding UC 8 "Play round" - Cast phase Marcel 10 9

6 Coding UC 8 "Play round" - Attack phase Cyril 10 6

7 Coding UC 8 "Play round" - End phase Cyril 4 4

8 Coding Store example cards in json file David 4 7

9 Coding UC 4 "Create deck" Marc 12 10

10 Documents Architecture Documentation - Use
Cases

Ilbien 5 3

11 Documents Architecture Documentation - Addi-
tional requirements

Ilbien 3 2

12 Documents Architecture Documentation - Soft-
ware architecture

Marc 2 2

13 Documents Architecture Documentation - De-
sign artifacts

David 2 3

14 Documents Architecture Documentation - Imple-
mentation

Marcel 2 2

15 Documents Architecture Documentation - Proj-
ect management

Cyril 2 2

16 Administrative Architecture Documentation - Re-
view

Cyril 8 7

17 Documents Architecture Documentation - Com-
position

David 2 2

18 Coding Refactoring Cyril 2 4

19 Administrative Prepare presentation Cyril 3 2
20 Meeting Update meeting (18.10.) Cyril 3 4
21 Meeting Update meeting (21.10.) Cyril 3 3
22 Meeting Update meeting (25.10.) Cyril 3 6

105 98(-7)

24GROUP IP1 | PSIT3

ELABORATION PHASE

ITERATION 3
In iteration 3, we implemented a prototype of our main use-case “Play
round” to prove that the main goal of our application is doable. Because
we prepared the setup really well in the previous iterations, we ended up
spending a bit less time than expected.
Because the prototype works well and as expected, we don’t have to make
adjustments to our setup, features list or upcoming roadmap.

25GROUP IP1 | PSIT3

CONSTRUCTION PHASE

ITERATION 4
Task Type Description Responsible Estimated effort

(in h)
1 Coding UC 8 "Play round" - Spell phase Cyril 20

2 Coding UC 8 "Play round" - Improve-
ments

Cyril 20

3 Coding UC 7 "Search opponent" - Cal-
culate player skill

Marcel 8

4 Coding UC 7 "Search opponent" -
Matchmaking

Marc 15

5 Coding UC 5 "Manage decks" David 10

6 Coding Detect disconnected players Ilbien 8

7 Meeting Update meeting (28.10.) Cyril 5

8 Meeting Update meeting (1.11.) Cyril 3

9 Meeting Update meeting (4.11.) Cyril 3

10 Meeting Update meeting (8.11.) Cyril 3

95

In iteration 4, we will finish the main use-case “Play round” and improve the
prototype implemented in iteration 3. Additionally, players will be matched
accordingly to their skill to make the matches fairer.

26GROUP IP1 | PSIT3

CONSTRUCTION PHASE

ITERATION 5 (ROUGH SCHEDULE)
Task Type Description

1 Coding UC 10 “Buy card”

2 Coding UC 9 “Collect card”

3 Documents First version of users manual

4 Meeting Meetings

In iteration 5, we plan to implement two use-cases and already start with a
first draft of the users manual.

ITERATION 6 (ROUGH SCHEDULE)
Task Type Description

1 Coding UC 6 “Buy deck space”

2 Documents Users manual finished

3 Documents Final report

4 Administrative Presentation

5 Coding Testing, Bugfixing, Improvements

6 Meeting Meetings

Iteration 6 marks the end of the project and a beta version should be ready.
So we finish all use-cases, documents and do some testing and final im-
provements to provide a fully functioning beta version.

27GROUP IP1 | PSIT3

CONSTRUCTION PHASE

ITERATION 5 (ROUGH SCHEDULE)
Task Type Description

1 Coding UC 10 “Buy card”

2 Coding UC 9 “Collect card”

3 Documents First version of users manual

4 Meeting Meetings

In iteration 5, we plan to implement two use-cases and already start with a
first draft of the users manual.

ITERATION 6 (ROUGH SCHEDULE)
Task Type Description

1 Coding UC 6 “Buy deck space”

2 Documents Users manual finished

3 Documents Final report

4 Administrative Presentation

5 Coding Testing, Bugfixing, Improvements

6 Meeting Meetings

Iteration 6 marks the end of the project and a beta version should be ready.
So we finish all use-cases, documents and do some testing and final im-
provements to provide a fully functioning beta version.

28GROUP IP1 | PSIT3

RISKS

Risk Probability Damage
Potential Priority Counter-measures

1 Playerbase
Players who play similar games have
invested time and money to collect
lots of cards which leads to prestige
among the players. This means people
playing similar games won’t be easy
to fetch and there is a chance that our
estimation is wrong.

High High 1 Spend more on ad-
vertising the game
on social media.

2 Network stability
We require a stable network. Metcal-
fe’s law points out that the benefit of a
network grows quadratic as the num-
ber of users increases.

Medium Medium 2 Use technologies
capable of
auto-scaling and
run stress tests.

3 Knowledge
Not every developer is already familiar
with the technologies in use.

Medium Low 3 Hold workshop-like
meetings or do
pair-programming
when problems
occur.

4 Real-time protocol
There is a chance that the protocol
used for real-time communication is
not suited for games

Low Low 4 Make sure the
communication is
implemented like
in the prototype
which has proven
that it works.

29GROUP IP1 | PSIT3

GLOSSARY

Board Place of the game where cards can be placed. All cards on the
board are visible to both players.

Deck A deck is a pool of cards that can be used for a game. Each play-
er can create his own decks so he has more control over which
cards appear during the game.

Hand cards Specifies all cards which the player has on his hand. The oppo-
nent cannot see these cards.

JSON JSON is an open-standard data format and easy to use in com-
bination with JavaScript.

MongoDB Is a document-based database which can store JSON-like docu-
ments.

RESTful API A RESTful API is an application program interface that uses
HTTP requests to GET, PUT, POST and DELETE data.

Skill level Indicates the skill level of a player. After each game, his skill will
get calculated depending on the skill of the opponent and the
outcome of the game.

WebSocket Is a real-time communication protocol for the web and used
to send changes in the game in real-time to the server and the
opponent.

